Estabilidad

En un sentido amplio, capacidad del coche para seguir la dirección que marcan las ruedas delanteras en cada momento.

En un sentido estricto hay muchas acepciones de este término, algunas de ellas contradictorias entre sí. Hay quien entiende que un coche es tanto más estable cuanto más deprisa puede tomar una curva. A esta acepción basada en la velocidad se oponen otras basadas en la seguridad, para las que un coche es tanto más estable cuanto más capaz de mantenerse en la trayectoria deseada por el conductor ante factores que tienden a desviarlo de esa trayectoria, sin provocar reacciones que lo hagan difícil de controlar.

Escape

Un poco antes de que el pistón termine su carrera de trabajo (ciclo de expansión) se abre la válvula de escape, con lo que los gases quemados, que tienen una presión en el cilindro mayor que la que existe en el exterior, comienzan a salir. Durante el ciclo de escape propiamente dicho, el pistón empieza a subir de nuevo desde el PMI al PMS y empuja los gases quemados. Esta fase cierra el ciclo de cuatro tiempos, durante el cual el cigüeñal ha dado dos vueltas completas (media por cada tiempo). Una vez que termina este ciclo, el proceso comienza de nuevo.

Embrague Automático

Una bomba hidráulica se encarga de hacer la fuerza que tradicionalmente ejerce el conductor sobre el pedal. Una centralita electrónica recibe y procesa las señales que recibe de la palanca de cambios, la velocidad del coche, régimen de giro del motor y forma en la que el conductor pisa el acelerador, y controla no sólo cuándo desembragar, sino también el resbalamiento que debe dar al embrague para que los cambios se realicen de forma suave. El conductor se olvida del pedal (que no existe), y sólo se tiene que preocupar de mover la palanca de cambios para insertar las distintas velocidades.

Embrague Multidisco

Sistema para engranar progresivamente un eje motor a otro. Consta de dos juegos de discos intercalados, uno de ello solidario con un eje y el otro solidario con el otro eje. Estos discos pueden estar completamente separados, de forma que uno de ellos no transmite fuerza al otro. A medida que se unen, el rozamiento entre ellos hace que uno arrastre al otro. Si la presión de unos sobre otros es bastante, pueden quedar completamente solidarios. El embrague multidisco es el sistema más común para embragar el motor a la transmisión en las motos. En coches se utiliza como mecanismo para pasar fuerza de un eje a otro en sistemas de tracción total (Honda CR-V) o como mecanismo autoblocante de un diferencial (Mitsubishi Carisma GT).

Embrague

Es un mecanismo que permite desacoplar momentáneamente el motor de la caja de cambios, para poder llevar a cabo la inserción de una nueva marcha. Consta de unos discos de fricción o forros que presionan sobre el volante motor por medio de un plato de presión empujado por un disco de diafragma o por unos muelles. Su funcionamiento es similar al efecto que se produce si ponemos en contacto un disco de lija montado en una taladradora eléctrica con otro estático: la fricción de ambas superficies hace que al final lleguen a girar a la misma velocidad. Cuando el motor está embragado (con el pedal sin pisar) el disco de fricción se oprime contra el volante motor, que gira solidario con el eje primario del cambio. Al desembragar (pisar el embrague) el primario se desconecta del motor, y cambia su velocidad de giro una vez insertada la nueva velocidad. En ese momento existe una diferencia de giro entre el motor y el eje primario del cambio, y al conectarlos de nuevo el embrague se encarga de compensar esa diferencia, por medio de los forros o discos de fricción. Se dice que el embrague patina cuando los forros de fricción se desgastan y sólo se acoplan parcialmente, aunque se puede hacer patinar un embrague en buen estado soltando suavemente el pedal al insertar una marcha, o bien para subir una pendiente sin que el coche se vaya hacia atrás.

Efecto Suelo

Es la influencia del suelo en el flujo alrededor de un perfil aerodinámico. Todos los cuerpos que se mueven cerca del suelo a cierta velocidad experimentan ese efecto; es decir, todos ellos (incluido cualquier coche) tienen «efecto suelo». Desde el punto de vista de la variación de la fuerza vertical sobre ese perfil, el efecto del suelo en el perfil puede hacer dos cosas: aumentarla o reducirla.

En el gráfico de la derecha (fuente: MIRA) se puede ver que, en ese caso, la presión aumenta cuando el perfil se mueve cerca del suelo. Ahí, el efecto suelo hace que la fuerza vertical (normal), aumente. Es lo que le ocurre a los aviones cuando están a punto de tomar tierra y también en algunas aeronaves diseñadas para volar cerca del agua (ejemplo).

Algunos coches están hechos para que se produzca el efecto contrario; es decir, que disminuya la presión que hay bajo el coche con relación a la que hay sobre él y, por tanto, aumente la fuerza normal para que los neumáticos tengan más rozamiento.

La idea de aprovechar el efecto suelo para aumentar la fuerza normal en coches de competición está ya en el Chaparral Chevrolet V8 que hizo Jim Hall en 1961. No funcionó debidamente hasta 1977, cuando que el equipo Lotus desarrolló un coche —el Lotus 78— con sus flancos aislados para limitar la entrada de aire. Un desarrollo de 1978 mucho más eficaz —el Lotus 79— utilizaba faldillas deslizantes que tenían un movimiento vertical para adaptarse al suelo, lo que daba un aislamiento mejor.
La aplicación con éxito del efecto suelo para ganar apoyo aerodinámico se atribuye a Peter Wright, que trabajaba como ingeniero en el equipo Lotus cuando el director técnico era Ralph Bellamy.

En 1969, un aficionado anónimo sugirió a Jim Hall la idea de utilizar aspiradores como método para crear una depresión bajo el coche, algo que puso en prática en el Chaparral 2J, en 1970. La idea de utilizar un aspirador fue puesta en práctica de nuevo por Gordon Murray en 1978 con el Brabham BT46B. Fue mucho más eficaz que el Lotus 79, pero fue prohibido después de ganar el Gran Premio de Suecia de ese año.